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We study polynomials {L~,Mo,MIo ...,MN(X; q)} ::'-0 orthogonal with respect to the
inner product

r(-a) foo x'
<f, g> = F( -a

q

) r(a + 1) 0 (~(1- q)x; q)"f(x) g(x) dx

N

+ I M,(D;f)(O)(D;g)(O),
v=o

where IX > ~. 1, N is an integer, and M, ;:. 0 for all v E {O, 1,2, ..., N}. These polyno­
mials are q-analogues of the polynomials {L:,Mo.M,.,MN(X)};;"_O orthogonal with
respect to the (Sobolev) inner product

We prove the orthogonality relation for which we give a discrete form (q-integral)
too. We give a representation as a basic hypergcomctric series, a recurrence relation
is derived, a Christoffel-Darboux type formula and a second order q-difference
equation satisfied by these new basic orthogonal polynomials. © 1992 Academic

Press, Inc.

1. INTRODUCTION

In [12] we studied the polynomials {L~,Mo.Ml.,..,MN(X)}:~o which are
orthogonal with respect to the (Sobolev) inner product

where 0( > - 1, N is an integer, and M v ~ 0 for all v E {O, 1,2, ..., N}. These
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n = 1, 2,3, ....

polynomials are generalizations of the classical Laguerre polynomials
{L~~)(x)}:=o and can be defined by

N+l
L~,Mo,Ml,...,MN(X) = L Ak DkL~~)(x)

k=O

for certain coefficients {Ak}t':Ol, The special case N= 1 was treated
in [15].

Note that for N> 0 the inner product defined by (1.1) cannot be
obtained from a weight function. That is why the polynomials
{L~,Mo,Ml, ...,MN(X)}:=o have some properties which differ from the well­
known properties of the classical orthogonal polynomials (see for instance
[3, 18]). For N = 0 these polynomials reduce to the polynomials
{L~,M(X)}:=O found by Koornwinder in [16]. The most important proper­
ties of Koornwinder's generalized Laguerre polynomials can be found in
[10]. In [8] 1. Koekoek and R. Koekoek proved that these polynomials
{L~,M(X)}:=o in general satisfy an infinite order differential equation. For
integer values of IX this differential equation is of order 21X +4.

In [9] we studied a q-analogue of Koornwinder's generalized Laguerre
polynomials. These polynomials {L~·M(x; q)}:= a are generalizations of
Moak's q-Laguerre polynomials described in [17].

In [11] we studied further generalizations of these q-Laguerre polyno­
mials. The polynomials described in [11] are q-analogues of the polyno­
mials {L~,Mo.Ml ..... MN(X)}:= a in the special case N = 1.

Now it is the aim of the present paper to find the q-analogues of the
polynomials {L~,Mo.Ml ..... MN(X)}:=o in the general case. These q-orthogonal
polynomials will be denoted by {L~,Mo,Ml ....,MN(X; q)}:~o'

2. SOME BASIC FORMULAS

First we summarize some definitions and formulas we need from the
q-theory. For details the reader is referred to [4].

We always take 0 < q < 1 in the sequel.
The q-shifted factorial is defined by

{
(a; q)o = 1

(a; q)n = (1- a)(1 - aq)(1 - aq2) ... (1- aqn-l),

For negative subscripts the q-shifted factorial is defined by

1
(a;qLn=(1 -n)(1 -n+l) (1 -1)'-aq -aq -aq

a¥-q, q2, q3, , qn, n = 1, 2, 3, .... (2.1)
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Further we have for all integers n

( )
(a; q)oo

a; q n = ( n ) ,aq ; q 00

where
00

(a;q)oo:= n (l-aqk).
k=O

We will use two simple formulas involving these q-shifted factorials:

57

and

(a- 1ql-n;q)n=(_a- 1 )n q -m(a;q)n, a,60, n=O, 1,2,.... (2.3)

We have a q-analogue of the binomial coefficient given by

It is easy to see that

(2.4 )

The basic hypergeometric series or q-hypergeometric series is defined by

d. (a 1 ,az, ...,ar \ • )
r'f's h h h q, Z

l' 2, ... ., S

(1 1 (1 +s-rl(n)
00 (a a a 'q) (-1) +s-rn q Z zn= L l' 2, , r' n .,

n=O (hI' hz, , bs; q)n (q; q)n

where

The q-hypergeometric series is a q-analogue of the hypergeometric series
since

(

Xl (X2 (X'I )
1· A. q,q , ...,q .( _1)I+s-r
1m r'l's f3 f3 f3 q, q Z
qjl ql,q2, ...,q'

= (0(1' O(Z' ••• , O(r I )
rFs {3 Z.

{3j,{3z,···, sl
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The q-binomial theorem

do (a I . )_ ~ (a;q)n n_(az;q)oo
1 '1'0 q, Z - L. z - ,

- n~O (q; q)n (z; q)oo
Iz[ < 1

is a q-analogue of Newton's binomial series. If a = 0 this leads to

(
0 I ) 00 zn 1

eq(z):= lrPO _ q; z = I -(-.-) =-(-.-)-,
n=O q, q n Z, q 00

Iz[ < 1, (2.5)

which can be seen as a q-analogue of the exponential function since

We will use another summation formula

which is often referred to as the q-Vandermonde summation formula.
The q-difference operator D q is defined by

(2.6)

{

f(X) - f(qx) ,

Dqf(x):= (l-q)x

1'(0),

x'!o

x=o,

(2.7)

where the function f is differentiable in a neighbourhood of x = O. We easily
see that

lim Dqf(x) = f'(x).
qtl

For functions f analytic in a neighbourhood of x = 0 this implies

n = 1, 2, 3, ....

(D;f)(O) := (Dq(D;-Y))(O)

f(n)(o) (q; q)n

=~(I-qY'

An easy consequence of the definition (2.7) is

(2.8)

D;[f(yx)] = yn(D;f)(Yx),

Further, we easily find from (2.7)

y real and n = 0, 1, 2, .... (2.9)

Dq[f(x) g(x)J = f(qx) Dqg(x) +g(x) Dqf(x) (2.10)
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which is often referred to as the q-product rule. This q-product rule can be
generalized to a q-analogue of Leibniz' rule

where [Z]q denotes the q-binomial coefficient defined by (2.4).
The q-integral of a function f on (0, 00) is defined by

fOO f(t) dqt := (1- q) I f(qk)q\
o k~-oo

(2.12 )

provided that the sum on the right-hand side converges. This definition of
the q-integral on (0, (fJ) is due to F. H. Jackson. See [6]. For more details
concerning q-integrals the reader is referred to Section 1.11 of the book
[ 4]. It can be shown that

lim foo f(t) dqt = foo f(t) dt
qj1 0 0

for functions f which satisfy suitable conditions. For details the reader is
referred to [1] and to references given in [4J.

In [5] Jackson defined a q-analogue of the gamma function:

(2.13 )

Note that this q-gamma function rq(x) satisfies the functional equation

Jackson also showed that

lim rq(x) = T(x).
qjl

For details the reader is referred to [1 J and to Section 1.10 of [4].
In [2] R. Askey gave a proof of the following integral formula which is

due to Ramanujan:

0(>-1.
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If a = k is a nonnegative integer we have to take the analytic continuation

I
, T( - a) r(a + 1) l' ( - a +k) T( - a) ( )
1m = 1m Ta+l
~~k T q ( -a) ~~k (-a +k) T q ( -a)

= (_I)k (q-\ qh In q-I T(k + 1)
k! (l_q)k+1

(k+ I)
(q;q)kq- 2 lnq-I

(l_q)k+1

For the residue of the q-gamma function the reader is referred to formula
(1.10.6) in [4]. We remark that we have in view of (2.5)

1

(-(I-q)x;q)""
as q i 1.

Finally we have a basic bilateral series which is defined by

,I, (aI' a2' ..., ar I . )
r'l's b b b q, Z

1, 2, ... , s

The special case r = s = 1 can be summed:

(al ) "" (a;q)n n
I t/J I b q; z = L -(b') Z

n~-"" ,q n

(2.15)

This summation formula is due· to Ramanujan. A proof of this summation
formula can be found in [2, 4].

3. THE DEFINITION AND PROPERTIES OF THE q-LAGUERRE POLYNOMIALS

In this section we state the definition and some properties of the
q-Laguerre polynomials {L~a)(x; q)}:~o' These q-Laguerre polynomials
were studied in detail by D. S. Moak in [17]. For more details concerning
these polynomials the reader is referred to [9, 17].

Let a> -1.
The q-Laguerre polynomials {L~a)(x; q)}:=o are defined by
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where L~~)(x) denotes the classical Laguerre polynomial.
By using (2.3) we obtain

+ lower order terms, n=O, 1,2, .... (3.2)

The orthogonality relation for these q-Laguerre polynomials
{L~~)(x; q)};;:'=o can be written as

(3.3 )

This orthogonality relation can also be written as

where the normalization factor A equals

00 qb+k
A= L k.·

k = - ao ( - c(1 - q) q , q) 00

This can be shown by proving that

Fi - il() f00 x~ ) d...,...----:---- P(x x
F(-a)F(il(+l) 0 (-(l-q)x;q)ao

1 00 qk~+k

=- L k p(cqk) (3.5)
Ak=_oo (-c(l-q)q ;q)oo
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for every polynomial P. To do this take for instance P(x) =
(-(l-q)x; q)m where m is a nonnegative integer. Then we easily see that
both sides of (3.5) equal q-(~+l)m.

By using the fact that

( (1 ) k. ) _(-c(l-q);q)oo
-c - q q ,q 00 - ( (1 ).)-c -q,qk

we obtain from Ramanujan's sum (2.15) with a = - c(l- q), b = 0, and
z=q~+\

00 qk~+k

A- "- k~~oo (-c(l-q)qk;q)oo

(q, -c(l-q)q~+\ _c- 1(1_q)-1 q-~; q)oo

= (q~+\ -c(1-q), -c- 1(1-q)-lq;q)00 .
(3.6)

Note that (3.4) can also be stated in terms of the q-integral defined by
(2.12):

1 00 t~- f L(~)(ct· q) L(~)(ct· q) d t
A* 0 (-c(l-q)t;q)oo m , n , q

c>O, (3.7)

where A * equals

f
oo t~

A*:= dqt.
o (-c(l- q)t; q)oo

(3.8)

We remark that the orthogonality relations (3.3), (3.4), and (3.7) are the
same since we work in the space of polynomials. This allows us to define
for polynomials f and g,

r (-a) foo x~

<f, g) = n -lX
q
) nIX + 1) 0 (- (1- q)x; q)oo f(x) g(x) dx

1 100 t~
= A* 0 (-c(1- q)t; q)oo f(ct) g(ct) dqt, c> 0, (3.9)
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where A and A * are defined by (3.6) and (3.8), respectively. However, since
c is an arbitrary positive constant, the relations (3.4) and (3.7) give rise to
infinite many different weight functions. So the Stieltjes moment problem
for the q-Laguerre polynomials {L~"')(x; q)}:~ 0 is indeterminate. For
details the reader is referred to [17]. (In particular, see Moak's remarks on
page 21 and page 25 in [17].)

As a q-analogue of L~a)(o)= ("~a) we have

n = 0,1,2, .... (3.10)

The q-Laguerre polynomials satisfy a second order q-difference equation
which can be stated in terms of the q-difference operator defined by (2.7)
as

x D~L~al(x; q) + [
1~~"'; 1 _ qa+ 2xJ(D qL~a))(qx; q)

1_ q"
+_1_qa+1L~a)(qx;q)=0. (3.11)

-q

Further we have a three term recurrence relation

1 11+ 1
- L(a)( • ) - - q L(a) ( . )

X 11 x,q -(1_q)q211+a+l 11+1 x,q

[
1 - q" + a + 1 1- q" J

- (1- q)q211+a+ 1 + (1- q)q211 +a L~a)(x; q)

and a Christoffel-Darboux formula

(3.12)

If we divide by x - y and let y tend to x we obtain the confluent form of
the Christoffel-Darboux formula

640/69/1-5
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(qa+l; q)n n qk(q; q)k {L1a)(x; q)}2

(q; q)n k~O (qa+i; qh

1- qn+ 1 [ d
=(I_q)qn+a+l L~a~l(X;q)dxL~a)(x;q)

-L~a)(x;q)~L~'"-Ll(X;q)l (3.13)

The q-analogue of the well-known differentiation formula DkL~a)(x) =
(_I)k L~a_\k)(x) yields

D~L~a)(x; q) = (_I)k qk(a+k)L~a_+kk)(qkx;q),

k = 0, 1,2, ..., n, n = 0, 1,2, .... (3.14)

4. THE DEFINITION AND THE ORTHOGONALITY

We will try to determine the polynomials {L~,Mo,Ml, ...,MN(X; q)};'=o which
are orthogonal with respect to the inner product

N

{

<j, g)q= <j, g)+ L Mv(D;f)(O)(D;g)(O),
v~O (4.1)

0:> -1, NE {a, 1,2, ... }, and M v ~O for all VE {a, 1,2, ..., N},

where the inner product <, ) is defined by (3.9).
We will show that these orthogonal polynomials can be defined by

N+l

L~,Mo,Ml,...,MN(X; q) = L q-k(a+k)Ak(D~L~a))(qkx; q),
k~O

n=O, 1,2, ... (4.2)

for some real coefficients {Ad::~. Moreover, we will prove the
orthogonality relation

m, n = 0, 1,2, .... (4.3)

First we will determine the polynomials {L~,Mo,Ml, ...,MN(X; q) };,=o which
are orthogonal with respect to the inner product (4.1). The Gram-Schmidt
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orthogonalization process assures us that such a set of polynomials exists
with degree[L~,Mo,Ml, ..,MN(x; q)] = n. So we may write by using (3.14)

L~,Mo,Ml, .. ,MN(X; q)

n

= I (_1)k AkL~~_\k)(X;q)
k~O

n

= I q-k(~+k)Ak(D;L~~»)(q-kx; q),
k~O

n=O,1,2, ... , (4.4)

where L~~)(x; q) denotes the q-Laguerre polynomial defined by (3.1) and
the coefficients {A k} ~ = 0 are real constants which may depend on n, rJ., M 0

M l , ..., M N , and q. Moreover, each polynomial L~,Mo,Ml,.. ,MN(X; q) is
unique except for a multiplicative constant. We will choose this constant
such that

By using the representation (4.4) and (3.2) we easily see that the coef­
ficient k n of x n in the polynomial L~,Mo,Ml,...,MN(X; q) equals

(4,5)

This implies that A o of: O.
Let p(x) = x m

. First of all we choose L~,Mo,Ml,.,MN(X;q) = 1 for
the moment and we will try to determine the polynomials
{L~,Mo,Ml,.. ,MN(X;q)};'=l in such a way that <p(X),L~,Mo,Ml,...,MN(X;q)q
=0 for all mE {O, 1,2, ... , n-1}.

We use the definition (3.1) of the q-Laguerre polynomials and
Ramanujan's integral formula (2.14) to obtain for k=0,1,2, ...,n
and m, n = 0,1,2, 00,
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Now we use the definition (2.13) of the q-gamma function and the
identities (2.2) and (2.3) to find

r q ( -a) n -a-m- j) na +m+ j+ 1)
r( - IX) r( IX + 1) r q( - IX - m - j)

=(-l)m+ j (l- )_m_j(q-~-m-j;q)oo
q (q-a;q)oo

-(1- )-m- j -(H1}m-('n -(Hm+l)j-U)( ~+l. ) ( a+m+l. )- q q q q ,q m q , q j'

Hence, by using the summation formula (2.6) we find

r q( -a) 100

x~+m L(Hk)(X' q) dx
r( - IX) r(a + 1) 0 (- (1 - q) x; q) 00 n - k ,

(q"+k+l. q ) (q"+l.q) (m)_ 'n-k 'm -(,,+I)m- 2

- (q; q)n-k (1 - q)m q

(
q-n+k q~+m+1 I )

X 2 rP 1 q" ~ k+ 1 q; qn - m

_ (qk-m; q)n-k (qa+ I; q)m -(a+ I)m- (';)

- (q; q)n-k (1- q)m q ,

m, n=O, 1,2, ....

k = 0, 1, 2, ..., n, m, n = 0, 1, 2, ....

Now we have by using (4.4) and (4.6)

r (-0:) 100 x~+m
q L ",Mo,Ml, ...,MN(X· q) dx

r(-o:)r(IX+I) 0 (-(I-q)x;q)co n ,

=(q"+I;q2mq-("+I)m-(~) i (_I)k
(l-q) k=O

( k-m )q ;qn-k
Ax k,

(q; q)n-k

(4.6)

First we consider the case that n ~ N + 2 and N + 1 ,;;:; m ,;;:; n - 1. Then it
is clear that

Since

(D~p)(O)=O for all v E {a, 1,2, ..., N}.

for k=O, 1,2, ..., m and m<n
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we see that <p(x), L~,Mo,Ml,... ,MN(X; q)q=O is equivalent to

67

( k-m )
q ; q n-k A -0

X k- ,
(q; q)n-k

m = N + 1, N + 2, ..., n - 1.

If we substitute m = n - 1, n - 2, ..., N + 1 respectively we easily obtain

for n~N+2.

Hence, the expression (4.4) reduces to (4.2) for n;?: N +2. For n::S; N + 1,
(4.2) is triviaL In that case the coefficients {A d Z::+ 1 can be chosen
arbitrarily. This proves that the polynomials {L~,Mo,Ml, ... ,MN(X; q)} :~o can
be defined by (4.2) for all n E {O, 1,2, ... }.

In order to define the coefficients {Ad ~:~ we now have to consider for
n = 1, 2,3, '"

for m '= 0, 1,2, ..., min(n - 1, N).

(4.7)

Since p(x) = x m we have by using (2.8)

(DV )(0) = (q; q)m (j
qP (1- q)m mv' v = 0, 1, 2, ..., N.

Hence, (4,7) implies, by using (4.1), (4.2), (4.6), (3.14), and (3.10), that

(q~+l,q) (m)min(n,N+l) (qk-m. q )
__'---"-m_mq-(O:+l)m- 2 L (_l)k .' n-k Ak
(1- q) k=m+ L (q, q),,-k

+(_1)m (q;q)m m(m+O:)M min(~+1)(_1)k
(1- )m q m 1...q k=O

( o:+k+m+l, )
q ,q n- k- m mkA - °

X () q k-'
q; q n-k-m

for m = 0, 1,2, ..., min(n - 1, N). We remark that the definition (2.1) implies
that

(qY;q)-n= (1_q-n+l)(1_q-n+2) (1_qO) =0
(q;q)-n (l_qy-n)(1_ qy-n+l) (1_ qY-l)

640/69/L-6
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m<n.

for y-n>O and n= 1, 2, 3, .... Hence

(qk-m. q) (qc<+k+m.+l. q)
, n-k= ' n-k-m=O

(q; q)n-k (q; q)n-k-m

for k ~ n + 1 and m = 0, 1,2, ..., min(n -1, N). Note that we have by using
(2.4 )

(qk-.m;q)n_k=[n-m-1] =[n-m-1]
(q,q)n-k n-k q k-m-1 q

(qn - k+ I; qh_m_ 1

(q; qh-m-I

This allows us to write

(qa+l. q ) (m) N+I (qn-k+l. q )
-=--_'-'''-'m=mq-(c<+I)m- 2 L: (_1)k .' k-m-I Ak
(1-q) k~m+l (q, qh-m-I

+(_1)m (q;q)m m(m+e<)M N~I(_l)k
(1- )m q m ~q k~O

( a+k+m+l. )
q , q n-k-m mkA 0

X q k=,
(q; q)n-k-m

for m = 0, 1,2, "" min(n - 1, N). However, we will define the coefficients
{Adt':~ in such a way that

(qC<+1. q) (m) N+I (qn-k+l. q )__,__mq-(e<+l)m- 2 L: (_1)k , k-m-I A
k

(q; q)m k~m+ I (q; q)k-m-I

(4.8)

for m =0, 1, 2, ..., N is valid for all n E {O, 1, 2, ... }. For n ~ N + 1 this is
the same system of equations. For n<N we have added the following
conditions on the arbitrary coefficients {Ad t':;+ I :

( c<+1. ) (m) N+I ( n-k+1. )q ,q mq-(c<+I)m- 2 L: (_l)k q ,q k-m-l A
k

(q; q)m k~m+l (q; qh-m-l
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where m = n, n + 1, n + 2, ..., N. Since we have by using (2.3) for k >n + 1

(k-n)
(qn-k+1. q ) =(_l)k-n-lq- 2 (q'q), k-n-l , k-n-l

k (k) (n+ 1)
=(_l)k-n-l q

n - 2 - 2 (q;qh-n-l

this implies

( x+l. ) (n) (n+l) N+l (k)q ,q n q -(x+l)n- 2 - 2 L lk- 2 Ak=qn(n+x)M"Ao
(q; q)n k~n+l

(qx+ 1. q) . (n+i), n+i -(x+l)(n+z)- 2

(q; q)n+i q

N+ 1

X L
k=n+i+ 1

( n-k+l. )
( _l)k q ,q k- n- i-I A k = 0,

(q; qh-n- i-I

i= 1, 2, 3, ..., N-n.

This implies for n~Nthat A n+2 =An+3 = .. · =A N+1 =0 and

(qX+1. q ) (n+l)..;;.:.._.;...,.:...:...:..:n -n(n+x+l)+n(n+l)- 2 A - n(n+rx)M A
( )

q n+ 1 - q n O·
q; q n

However, in the sequel we only need

( x+l. ) N+l (k)
n(n+rx)M A _ q ,q n -n(n+rx+ 1) " nk- 2 A

q n 0- ( ) q L. q k
q; q n k~n+ 1

for n ~ N.

(4.9)

Now we have found the representation (4.2) where the coefficients
{Ad ~:~ satisfy (4.8). Note that we changed the choice of
L~·Mo,Ml .... MN(X; q) = 1 such that (4.2) also holds for n = O. We remark that
the system (4.8) of equations for the coefficients {Ad~:~ can be solved for
every N. For instance, in [11] we found an exolicit representation in the
case N = 1. It would be a nice result to find an explicit formula for each
coefficient A k in general. However, in this paper we only need the
property (4.9).

To complete the proof of the orthogonality relation (4.3) we note that it
follows from (4.2), (3.2), and the orthogonality we just proved that
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Now we obtain from (4.1), (4.2), and (4.6) for m = n ~ N +1

(qa+l. q) (n)N+! (qk-n. q)
= 'nnq-(a+!)n- 2 L (_I)k .' n-k Ak

(1- q) k~O (q, q)n-k

( a+1. ) N+! (k
=(_I)n q ,q n -n(n+a+!) ~ nk- 2)A

(1 _ )n q L... q k'
q k~O

This proves (4.3) in the case that n~ N + 1.
For n ~ N we find by using (4.9)

=(qa+!;q~nq_(a+l)n_(~) ±(_I)k(qk~n;q)n_k A
k

(l-q) k=O (q, q)n-k

+ (_I)n (q; q)n n(n+a)M A
(l-qt q n 0

( a+1. ) N+! k
=(_I)n q ,q n -n(n+a+!) ~ nk-(2)A

(1 _ )n q L... q k'
q k~O

This proves (4.3).

5. ANOTHER REPRESENTATION

The polynomials {L~,Mo,Ml,...,MN(X; q)}:'=o given by (4.2) can also be
written as

N+!
L~,Mo,Ml,...,MN(X; q) = L q-k(a+2k)BkXk(D~L~a+k»)(q-kx; q), (5.1)

k=O

where the coefficients {Bk}f::~ are related to the coefficients {Ak}~:~

found in the preceding section in the following way

i = 0, 1, 2, ..., N + 1

and
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B = (1_q)k ~(k~1)+k(a+2k)N~1('_1)j+krjJ
k (a+k. ) q L. kq ,q k j~k L . q

(qn- j+ 1. q)
X ' J-k A. k=O,1,2, ...,N+l,

(qa+2k+l; q)j-k J'
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where the q-binomial coefficient is defined by (2.4).
This can be shown by first proving and then using the following two

relations involving q-Laguerre polynomials

k [kJ (n-k+l.) (a+k.)k(DkL(a+k))( -k . )= k2 " q ,q k-i q ,q i
X q n q x, q q L.. . (1 _ )k

i~O I q q

and

respectively, for k, n = 0, 1, 2, ....
The proof can be found in [13, 14].

6. REPRESENTATION AS BASIC HYPERGEOMETRIC SERIES

If we write

(qa+l. q ) n (m) (l_q)m
L~,MO,Ml,...,MN(X; q) = 'n L Cmq 2 q(n+a+ l)m X m

(q; q)n m=O (q; q)m

then it follows from (4.2) and (3.1), by using (2.2) and (2.3) that

N+l ( -no ) k
C =" q ,q m+k nk-(2)A

m L.. ("+1) q kk=O q ;q m+k

( -n.) N+1 (k)
q , q m "(q~n+m. q) (q"+k+m+ 1. q) qnk- 2 A .

(
a+1. ) L.. ' k , N+1-k k

q , q m+N+1 k~O

Note that

N+1 k
F(z):= I (q-nz;qh(qcx+k+1z;q)N+1_kqnk-(2)Ak

k~O
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is a polynomial in z of degree at most N + 1. The coefficient of ZN + 1 in F(z)
equals

Note that it follows from (4.3) that

N+ 1 (k)
F(O)= L qnk- 2 Ak=FO.

k=O

This implies that all zeros of F(z) can be written as (complex) powers
of q. If

(6.1 )

then the polynomial F(z) has degree N + 1. In that case we may write

N+ 1 (k
F(qm)= L (q~n+m;q)dqHk+m+l;q)N+I_kqnk- 2)Ak

k=O

= (:~~ qnk- (~)A k) (1- qPO)(1- qPI) ... (1- qPN)

(qPo+ I; q)m (qPI + I; q)m'" (qPN+ I; q)m
X -'-=-_--::-=:'-'-"---.c;:...-;:-----':...-..;;c_----;:.__~

(qPO; q)m (qPI; q)m'" (qPN; q)m

for some complex Pj , j = 0, 1,2, ..., N. Hence, by using

(qa+l. q) =(qa+l.q) (qa+N+2. q)
., m+N+l 'N+l 'm'

which follows directly from (2.2), we have

(q
-n qPo+I qPl+ 1 qPN+l I )., ., ., ... , . n+a:+ 1

X N+2,pN+2 a+N+2 Po PI PN q, -(1-q)q x .q , q , q , ..., q

(6.2)
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If (6.1) is not satisfied, then F(z) is a polynomial of a degree less than
N + 1. In that case we find a representation as a k~k basic hypergeometric
series where k < N + 2 in a similar way.

7. A SECOND ORDER q-DIFFERENCE EQUATION

In this section we will show that the polynomials {L~,Mo,Ml,."",MN(X; q)} :~o
satisfy a second order q-difference equation. The method found in [7] can
be applied in this case too. We prove the following theorem.

THEOREM 1. The polynomials {L~,Mo,Ml, .. ,MN(X; q)}:=o satisfy a second
order q-difference equation of the form

xP2(x) D~L~,Mo,Ml,"".,MN(X;q) - Pl(x)(DqL~,MO,Ml"MN)(qx; q)

l_ qn

+-1-- Po(x) L~,Mo,Ml, ..,MN(qx; q) = 0, (7.1)
-q

where Po(x), P 1(x), and P2(x) are polynomials with

Po(x) = q"'+ lAo (:~~ qnk- (~)Ak) XN + 1 + lower order terms

P1(x) = qot+2A o(:~~ lk- (~)Ak ) XN +2+ lower order terms (7.2)

(
N+l k))

P2(x)=A o k~O qnk-(2 Ak x N +1 +lower order terms

and

(7.3)

Proof We consider the q-difference equation (3.11) for the q-Laguerre
polynomials. By using the fact that

L~"'\q-lx;q) = L~"')(x; q) + q-l(1_ q) x(DqL~"'))(q-lx; q)

which follows directly from (2.7), we write this q-difference equation (3.11)
in the form

q-2x(D~L~"'))(q-2x; q) + [ 1~~"'q+ 1 _ qn + "'xJ(DqL~"'))(q-lx; q)

1 n

+ 1-
q

q"'+lL~"')(x;q)=O. (7.4)
-q
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If we let D; act on (7.4) and use the q-analogue of Leibniz' rule (2.11) we
obtain

k=O, 1,2, .... (7.5)

Now we consider the definition (4.2). We multiply by x and use (7.5) for
k = N - 1 to find

N

XL~,Mo,Ml, ...,MN(X; q) = L bk(X)(D;L~~»)(q-kx; q), (7.6)
k=O

n+~ JAq x N+l'

Now we multiply (7.6) by x and use (7.5) for k = N - 2 to obtain

N-l

x2L~,Mo,Ml,...,MN(X; q) = L bk(X)(D;L~~»)(q-kx; q),
k=O

where

k = 0, 1, 2, ..., N - 3

1 n-N+2
-b () b () - q ~ + 3N - 3b ( )N-2 X =X N-2 X - 1 q N X

-q

- [1_q~+N-l J
bN_ 1(x) = xbN_ 1(x) - qN 1 _ q - qn H X bN(x).

Repeating this process we finally obtain by using (7.5) for k = °
xNL~,Mo,Ml, ...,MN(X; q) = Po(x) L~~)(x; q) +Pl(x)(DqL~~»)(q-lx; q) (7.7)
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for some polynomials Po(x) and PI (x) which satisfy
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Now we use the q-product rule (2.10) to obtain from (7.7)

l_ qN
-l__ XN-IL~,Mo,Ml...,MN(qx; q) +xNDqL~,Mo,ML .... MN(X; q)

-q

We multiply by x and replace x by q-1x to obtain

1 N
- q xNLa,Mo,Ml, ...,MN(x· q) + q-N-IXN+ l(D L~,Mo.Ml,.... MN)(q-lX· q)

(1 _ q) qN n' q n ,

=q-1x{DqPo)(q-1x) L~a){x; q)

+ q- 1x[Po(q-1X) + (Dqpd(q-lX)]{DqL~~»)(q-lx; q)

+ q-2xPl(q-lx)(D~L~a»)(q-2x; q).

Now we use (7.4) and (7.7) to find

where

(7.10)
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By using (7.8) and (7.10) we easily see that

In the same way we obtain from (7.9)

l_ qN+1
1 x NDqL~,Mo,Ml, ...,MN(X; q) +q-1XN+ l(D~L~,Mo,Ml, ...,MN)(q-lx; q)
-q

=Dqro(x) L~rx)(qx; q) + [ro(x) +D qr1(x)J DqL~rx)(x;q)

+ q-lrl(x)(D~L~rx))(q-lx; q).

Multiplying by x and applying (7.4) again gives us by using (7.9)

XN+2(D~L~,MO,Ml, ...,MN)(q-2x; q)

= so(x) L~rx)(x; q) +S1 (x)(DqL~rx))(q-lx;q), (7.12)

where

(7.13 )

By using (7.11) we easily see that

1_ qn (N+l (k)so(x) = - --- qrx+3 I qnk- 2)Ak x N+ 1+ lower order terms
1-q _

k-O (7.14)

(
N+ 1 k)

Sl(X)=qn+rx+2 k~O qnk-(2)Ak x N + 2 +lower order terms.

Elimination of (DqL~rx»)(q-lx;q) from (7.7), (7.9), and (7.12) gives us in
view of (3.10)
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(7.15)

(7.16)

!
PO(X) rj(x) - Pj(X) ro(x) = xNPi(x)

PO(X) Sj(X) - Pj(X) SO(X) = xNPt(x)

1 n

ro(x) Sj(x) -rj(x) so(x)=~ xN+ jp3'(x)
l-q

for some polynomials Pi(x), Pf(x), and P~(x). Here we used the fact that
for n = 0 it follows from (7.7) that Po(x) = AoxN. Therefore we have from
(7.10) and (7.13), ro(x)=so(x)=O.

Now we conclude from (7.7), (7.9), and (7.12), by using (7.15)

xNL~,MO,Ml, ...,MN(X; q) Po(x) Pl(X)

0= x N+ j(DqL~,MO,Ml,.. ,MN)(q-jx; q) ro(x) r 1(x)

XN+2(D~L~,Mo,Ml,...,MN)(q-2x; q) so(x) Sl(X)

= X2N + 2pi(x)(D~L~,Mo,Ml, ... ,MN)(q-2x; q)

_ X2N + 1Pt(x)(DqL~,Mo,Ml, .. ,MN)(q-jx; q)

1_ qn

+-1-- X2N + jpt(x) L~·Mo,Ml,..,MN(X; q).
-q

We divide by X
2N + 1 to obtain

xPt(x)(D~L~,Mo,Ml,...,MN)(q-2x; q) -Pt(x)(DqL~,Mo,Ml, ...,MN)(q-jx; q)

1_ qn

+-1-- Pt(x) L~·Mo,Ml,...,MN(X; q) = O.
-q

We replace x by q2x and use the fact that

L~,Mo,Ml,...,MN(q2x; q) = L~,Mo,Ml, ...,MN(qx; q)

- q(l-q) x(DqL~,Mo,Ml,...,MN)(qx; q)

which follows directly from (2.7), to find

q2xp1(q2X) D~L~,Mo,Ml, ...,MN(X; q)

_ [Pt(q2X) +q(1- qn) xP~(q2x)](DqL~,Mo,Ml, ...,MN)(qx; q)

1_ qn

+-1-- Pt(q2X) L~,Mo,Ml, ...,MN(qx; q) = 0
-q

which proves (7.1) if we define

{

q2N+4P2(X) := q2P1(q2X)

q2N +4p j(x) := Pi(q2X)+q(l _ qn) xPt(q2X)

q2N+4PO(X) := pt(q2X).
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It easily follows from (7.15), (7.8), (7.11), and (7.14) that

Pt(X)=q"'+3AO(~t:qnk-(;)Ak) XN+1+ lower order terms

P{(x) = qn+ '" +2AoCt: qnk- (;)Ak) x N
+2 + lower order terms (7.17)

pr(X)=Ao(~~: lk-(~)Ak)XN+l+lower order terms.

Now (7.2) follows from (7.16) and (7.17).
It remains to show that (7.3) is true. To prove this we note, by using

(2.7) and (7.16), that (7.3) is equivalent to

(1- q)[P{(qx) + (1- qn) xPJ(qx)]

= qa+N+4p{(X)_ q2p{(qx) + (1- q) qa+N+4Xp{(X). (7.18)

Now we will prove (7.18).
From (7.10) it follows by using the definition (2.7) that

{

(1- q) ro(qx) = qN + lpO(X) - qPo(qx) - (1 - qn) q"'+N+2p1(X)

(1- q) r 1(qx) = (1- q) qN+ lXpO(X) +qa+N+ 2P1 (x) - qPl (qx)

+ (1- q) qn+",+N+2xP1 (x).

(7.19)

Now we use (7.15) and (7.19) to see that

xN[Pt(qx) + (1- qn) xPJ(qx)]

= q-N[pO(qX) SI(qX) - PI (qx) so(qx)]

+ (1- q) q-N-l[ro(qx) SI(qX) - r1(qx) so(qx)]

== [Po(x) - (1- qn) q"'+ lp1 (X)J SI(qX)

- [(1- q) xpo(x) +qa+]11 (x)

+ (1 - q) qn+ a+ lXP1 (X)] so(qx). (7.20)

By using (7.13) and (2.7) we find

{

(1 - q) so(qx) = qN + 3ro(X) - q2ro(qX) _ (1 _ qn) qa+ N+ 4r1 (x)

(1 - q) SI(qX) = (1 - q) qN+ 3xro(X) +q"'+N+4r1 (X) - q2r1 (qx)

+ (1- q) qn+a+N+4xrl(x).

(7.21 )



q-ANALOGUES OF LAGUERRE POLYNOMIALS 79

Hence, by using (7.20) and (7.21) we obtain

(1- q) xN[Pt(qx) + (1- qn) xP~(qx)J

= q<X+N+4[pO(X) rl(x) - PI(X) ro(x)]

+ (1- q) q<X+N+4X[pO(X) rl(x) - PI(X) ro(x)]

+ [(1- q) q2xPO(X) + q<X+3PI (X) + (1- q) qn+x+3xpl (x)] ro(qx)

- [q2pO(X)- (1- qn) q<X+3pl (X)] rl(qx).

Finally, we use (7.19) and (7.15) to find

(1- q) xN[Pt(qx) +(1- qn) xP~(qx)J

=q<X+N+4[pO(X) rl(x) - PI(X) ro(x)J

+ (1- q) q<X+N+4X[pO(X) rl(x) - Pl(X) ro(x)]

+ [(1 - q) q-N + lrl(qx) + q-N +2PI(qX)] ro(qx)

- [(1- q) q-N+ lro(qx) +q-N+2po(qX)] rl(qx)

= q<X+N+4[pO(X) rl(x) - Pl(X) ro(x)J

+ (1- q) q<X+N+4x[pO(X) rl(x) - Pl(X) ro(x)J

- q-N+2[pO(qX) r1(qx) - PI(qX) ro(qx)J

= xN[q<X+ N+4Pf(x) + (1 _ q) q<x+N +4xPf(x) _ q2Pf(qx)].

This proves (7.18) and therefore (7.3).
This completes the proof of the theorem.

8. RECURRENCE RELATION

In this section we will prove the following theorem.

THEOREM 2. The polynomials {L~·Mo,Ml, ..,MN(X;q)}:=o satisfy a
(2N + 3)-term recurrence relation of the form

n+N+IL E~n)L%,Mo,Ml, ...,MN(x;q),
k=max(O,n-N-l)

n=0,1,2,.... (8.1)
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Proof Since XN+IL~,Mo,Ml, ...,MN(X; q) is a polynomial of degree
n +N + 1 we have

n+N+l
x N+ lL~,Mo,Ml, ...,MN(X; q) = L Er)LZ,Mo,Ml, ...,MN(x; q),

k=O
n =0,1,2, ...

(8.2)

for some real coefficients Ein ), k = 0, 1,2, , n +N + 1.
Taking the inner product with L~Mo,Ml, ,MN(X; q) on both sides of (8.2)

we find by using (4.1) for n = 0, 1, 2, ... and m = 0, 1, 2, ..., n + N + 1,

<L~MO,Ml, ...,MN(X; q), L~Mo,Ml, ...,MN(X; q)q' E;;:l

= <XN+IL~,Mo,Ml, ...,MN(X; q), L~Mo,Ml, ...,MN(X; q)q

In view of the orthogonality property of the polynomials
{L~,Mo,Ml, ...,MN(X;q)}:~o we conclude that E;;:)=O for m+N+ 1 <no This
proves (8.1).

The coefficients {Ad~':J in the definition (4.2) depend on n. To dis­
tinguish two coefficients with the same index, but depending on a different
value of n we will write Ak(n) instead of Ak. Comparing the leading coef­
ficients on both sides of (8.2) we obtain by using this notation and (4.5)

n=O, 1,2, ....

If we define

=(qIX+l;q)nA (N~l nk-(~)A)
( .)nOL.q k
q,q nq k=O

then we find by using (8.3), (4.5), and the orthogonality that

n=N+ 1, N+2, ....
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9. A CHRISTOFFEL~DARBOUX TYPE FORMULA

From the recurrence relation (8.1) we easily obtain

(xN+ 1_ yN+ 1) L%,MO,Ml, ...,MN(X; q) L%,MO,Ml, ..,MN(y; q)

k+N+I
L E~)[L~MO,Ml, ... ,MN(X; q) L%,Mo,Mj, .. ,MN(y; q)

m ~max(O,k- N -I)
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k = 0, 1, 2, ".. (9.1)

k - N - 1 ::::;, m ::::;, k + N + 1, k, m = 0, 1, 2, "..

We divide by A k and sum over k = 0, 1,2, "., n:

(x N + 1_ yN+ I) ±L%,MO,Ml, ..,MN(X; q) L%,MO,Ml, ...,MN(y; q)

k~O A k

k+N+ 1 E(k)
= L L Am [L~MO,Ml,...,MN(X; q) L%,MO,Ml .... ,MN(y; q)

k=O m~max(O,k-N-l) k

_ L':,;Mo,Ml, ...,MN(y; q) L%,MO,Ml, ..• MN(X; q)]

for n = 0, 1, 2, "..
Now we use (8.3) to see that

E~) E1m )

A k = Am'

Now we have the following situations. For n :::; N we have

n k+N+I

L
n

=L
n n k+N+ 1 n

L+L L =L
k+N+I

L

and for n ~ N + 1 we have
n k+N+ 1

L
n

L
min(n,k+N+I) n

L + L
k+N+I

L
k=O m~max(O,k-N-I) k=O m=max(O,k-N-I) k~n-N m=n+1

n k+N+ I

L L
k=n-N m=n+l

So it follows from (9.1) by using this observation that

n L rx.Mo,Ml, ...,MN(X· q) L rx,MO,Ml, ... ,MN(y' q)
(x N + 1_ yN + I) L k 'k ,

k=O A k

n k+N+ 1 E(k)L L...-!!!..- [L':,;Mo,Ml, ...,MN(x; q) L~Mo,Ml ....,MN(y; q)
k=max(O.n-N) m~n+l A k

(9.2)
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for n = 0, 1,2, .... This can be considered as a generalization of the
Christoffel-Darboux formula (3.12) for the q-Laguerre polynomials.

If we divide the Christoffel-Darboux type formula (9.2) by x - y and let
y tend to x then we find the confluent form

for n = 0, 1, 2, .... This formula can be considered as a generalization
of (3.13).
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